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Summary. A simple and efficient way of representing the kernel of an exchange 
operator that still maintains its non-local character, is presented here. Such an 
approach seems particularly effective in the case of large molecules constituted 
by separate, well-defined chemical fragments whose contributions to the kernel 
of the total exchange operator can be prepared through separate calculations on 
each fragment. The performance of the method is illustrated through calculations 
on a specific molecular example. 

Key words: Exchange operator - Representation - Transferability 

1. Introduction 

It is well known that, in the case of large molecules, the main obstacle which 
hinders the use of the Hartree-Fock (HF) method for a preliminary quantitative 
estimate of the electronic molecular properties is constituted by the evaluation of 
the exchange energy contribution. In fact, even if a core-valence or a-re 
electronic partition is used together with a "frozen core" or simplified represen- 
tation of the "inactive" electrons, the non-local character of the exchange 
operator introduces additional difficulties in obtaining an economic but still 
accurate representation of the operator. 

In a series of papers [1-4] we have proposed a "valence-only" approach in 
which the contributions of the core electrons both to the wave function and to 
the energy expression are derived from separate atomic calculations and ex- 
pressed in terms of a few constants or simple monoelectronic operators with 
matrix elements that are easy to evaluate. In our method the calculation of the 
core-valence exchange contributions is advantageous owing to  the strictly atomic 
character of the orbitals representing the core electrons and to their localization 
inside finite spherical volumes. 

These two characteristics, however, can no longer be exploited if one wants 
to represent exchange operators having kernels that are formed by molecular 
orbitals constructed for well-defined chemical fragments and localized inside 
volumes of complicated and irregular forms. The aim of this paper is to propose 
a simple and general way of representing such exchange operators making use of 
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only constants and wave functions prepared through separate calculations on the 
isolated fragments. 

The generality of our approach consists in the fact that it can be applied to 
any given type of molecular fragment and, therefore, as a particular case, also to 
exchange operators with kernels made up of atomic core orbitals. Its simplicity 
and economy derives from the fact that the evaluation of the matrix elements of 
the exchange operator is reduced to the sum of a few superposition integrals 
weighted by constant factors that can be calculated apart on the separate 
fragments. 

Note that, although characterized by the presence of superposition integrals, 
our approach is basically different from those techniques [5-9] - based on the 
approximations proposed by Mulliken [10] and developed by Ruedenberg [11] - 
that simplify the polycentric electron repulsion integrals through a projection of 
the two-center charge distributions onto one-center distributions weighted by 
appropriate overlap factors. The advantage of our method with respect to these 
approaches is to approximate directly an exchange operator the kernel of which 
is made up by orbitals of a whole molecular fragment instead of approximating 
separate polycentric integrals. This fact, obviously, assures a large simplification 
in the computational procedures. 

2. Matrix representation of the exchange operator 

Let us consider first an exchange operator/<~ with a kernel k~(~, K) made up of 
a L2-function q~ and defined through its application to any given function f as 
follows: 

R f(e) = f k (e, de' = f de'. (1) 

By introducing a complete set of orthonormal functions {Z/} it can be easily 
proved that an equivalent representation of the kernel k~(f, ~') is the following: 

k~(~, F') = ~ Z,(?)E~/X* (~') (2) 
0 

where 

%.-=<Xil.~lXj>= fx*i (~)k~(~,~')Zj(~')d~d~'=(z,q>lq>Zj ) (3) 

are the elements of the matrix Ee~ representative of the exchange operator/<~ 
over the basis set {X/}. 

Note that Eq. (2) is general (i.e., not specific for the exchange operator) and 
based on the basis set completeness which allows one to use the following 
resolution of the identity operator: 

f= E Iz:><zjl. (4) 
J 

Furthermore, since /<~ is hermitian, its matrix Eg can be diagonalized and 
the kernel k~(~, ? ) expressed in terms of the corresponding eigenvalues and 
eigenvectors as follows: 

= ( 5 )  
l 
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where 
Eg~ = UAx U+; • =ZZ~uo. (6) 

The usefulness of Eq. (2) or (5) rests on the fact that, if tp is strictly localized 
on a well defined chemical fragment, the basis set {Zj } can also be chosen as it 
is made up only by functions centred on the same molecular fragment and the 
matrix elements {%} can be prepared through separate calculations on the 
fragment itself. 

Moreover, if the molecule is obtained by assembling ~ distinct chemical 
fragments, each one having a given number {n u } of localized electrons, the total 
exchange operator K can be written as the sum of Jg contributions, each one 
with a kernel which depends on a density matrix (Q,) for the fragment itself: 

ea(r, ) ., 
gf(~) = Z g~,,f(O = k[e.(~, Y)]f(Y) = l ~ f ( r  ) dY (7) 

# u tt ,d [" " l 

where 
n# 

e,(e. ~') = F~ e?)(O~o},)*(e'). (8) 
J 

This partition of the total exchange operator follows immediately when the 
total wave function is given as an antisymmetrized product of group functions 
[5, 6] - one for each localized group of electrons - that are mutually related by 
the strong orthogonality condition. Such a constrain mixes, obviously, the 
different group functions since the orbitals of each fragment have tails that are 
delocalized on the other fragments in order to satisfy the orthogonality request. 
However, if the various chemical fragments are clearly identified and the 
corresponding orbitals well localized, the mixing effects due to the orthogonaliza- 
tion are, in general, negligible and for many purposes they can be disregarded 
without introducing relevant errors. 

It follows that, for this type of system, one can treat separately the various 
electronic groups and construct for each fragment # an exchange operator with 
a kernel k,(f, f') given in terms of a matrix of constants E (~) and a vector of 
functions X(~)(0 obtained separately for the fragment itself: 

with 

%; ()¢ijZj (r) (9) 
O 

f O,(e. ~') ,.~) = z~")*(O ~ z ; ( ~ ' )  d~d~' (10) 

and ~. the density matrix calculated for the isolated fragment # without 
introducing any orthogonality constraint to the orbitals of the other groups. 

Moreover, as regards the total exchange operator, any given matrix element 
between two functions f and g can be simply expressed as the following sum of 
matrix products: 

.At" 

(g ]/£]f> = Z <g IX(~)}E(u)(Xtu)lf> (11) 

where 

(~) (~) (;,) (glX(~)}E(u)(X(")lf} = ~ (glzi }co (Zj If). (12) 
O 
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Note that the degree of  accuracy that can be achieved using the two 
equivalent expansions (2) or (5) over a finite basis set depends on both the 
extension and the quality of this set - polycentric for a molecular fragment and 
made up by functions chosen according to various possible criteria (see also 
Refs. [ 5 - 9 ] ) -  and on the degree of trasferability of the kernel orbitals. The 
larger is this transferability the more localized are the electronic groups and 
chemically better defined the corresponding fragments: these two Characteristics 
are prerequisites necessary for the application of our method. 

3. A prototype calculation 

In order to give an example of the performance of our method we have applied 
it to the following aromatic molecule obtained through the condensation of  two 
pyrroles: 

H H 
\ / 

0 3 ~ 0 4  H 

\\ // 
. /O,o-O\  

H H 

Fig. 1. Molecular structure of the 
2,2'-bipyrrole with a progressive 
numbering of the heavy atoms 

Because of the clear separation between a and n electrons in the dimer the 
variational process for constructing its molecular orbitals can be reduced to the 
n-space while using, for the other electrons, orbitals obtained from a separate 
calculation on one pyrrole. 

In our approach the preliminary problem is that of  preparing functions 
properly localized on the atoms and along the bonds of each fragment. This step 
is necessary, in this case, to substitute the orbital corresponding to a C - H  
e-bond with that for a C-C bond connecting two pyrroles. Although there are 
several sophisticated methods proposed for localizing o rb i t a l s -  see e.g. Refs. 
[7-9] - we have used a simple process that maximizes the overlaps among the 
HF orbitals and a given set of  normalized reference functions having the 
required geometry and localization. This process - which is based on a repeated 
set of two by two unitary transformations of the HF core and a orbitals of  the 
pyrrole - guarantees an overlap of at least 95% between reference functions and 
final orbitals and therefore leads to a relevant localization of the latter. 

The kernel of the exchange operator for the dimer is thus obtained by adding 
two kernels, each one made up by the core and a orbitals of  one pyrrole without 
a C -H  e-bond, and a third kernel constructed with the orbital for the C-C bond 
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between the two pyrroles that has been obtained from a HF calculation on the 
dimer. 

The quality of our approach can be judged from the results reported in 
Tables 1 and 2 in which we compare the matrix elements of exchange operators 
with kernels constructed in two different ways but relative to the same set of 
electrons: the core and tr electrons of one pyrro!e without a C-H e-bond. In 
Table 1 we show the matrix elements of the exchange operator with the exact 
kernel, i.e., that involving the localized HF orbitals of the dimer and calculated 
using the standard definition of Eq. (1). In Table 2, instead, we present the 
values of the exchange matrix elements when the kernel is approximated via Eq. 
(2) using a basis set of seven 2p Slater functions and starting from the localized 
orbitals obtained from a HF calculation for an isolated pyrrole. The basis 
functions for the kernel expansion have Slater exponents and are centred on the 
1 - 5  positions of Fig. 1 with the two remaining functions centred one on C6 and 
the other on a position (C6,) symmetric to the previous one with respect to a 
reflection through a plane containing N1 and perpendicular to the molecule. 

Table 1. Exact exchange operator: the matrix elements are calculated among ten 2p functions on the 
two pyrrole rings. The functions are numbered as the positions in Fig. 1. All the elements are given 
in atomic units 

1 2 3 4 5 6 7 8 9 10 

1 0.2031 
2 0.0447 0.1587 
3 0.0078 0.0497 0.1629 
4 0.0076 0.0091 0.0462 0.1622 
5 0.0421 0.0085 0.0090 0.0464 
6 0.0025 0.0003 0.0003 0.0024 
7 0. 0. 0. 0.0003 
8 0. 0. 0. 0. 
9 0. 0. 0. 0. 

10 0.0005 0. 0. 0.0001 

0.1088 
0.0058 0.0015 
0.0003 0.0001 0.0002 
0. 0. 0. 0. 
0. 0. 0. 0. 0. 
0.0004 0.0001 0. 0. 0. 0.0001 

Table 2. Approximation of  the exchange operator via Eq. (2): the matrix elements are calculated 
among ten 2p functions on the two pyrrole rings. The functions are numbered as the positions in Fig. 
1. All the elements are given in atomic units 

1 2 3 4 5 6 7 8 9 10 

1 0.2033 
2 0.0447 0.1587 
3 0.0078 0.0497 0.1629 
4 0.0076 0.0091 0.0463 0.1624 
5 0.0420 0.0085 0.0090 0.0463 
6 0.0024 0.0003 0.0003 0.0024 
7 - .0003 0. 0.0001 0.0003 
8 - .0001 O. O. --.0001 
9 --.0001 O. O. - .0001 

10 0.0006 0.0001 0. - .0004  

0.1081 
0.0056 0.0023 

- .0016 0.0004 0.0001 
--.0007 0.0001 0. 0. 
--.0007 0.0001 O. O. 
- .0020 0.0004 0.0002 0. 0.0002 
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The matrix elements of the two exchange operators have been calculated 
among ten 2p Slater functions, one for each heavy atom of the dimer. The orbital 
exponents have been obtained from the Slater rules (~c --- 1.625; ~u = 1.95) and 
the geometry of the dimer is that of Ref. [ 10]. 

By comparing the results of Tables 1 and 2 one can point out the following 
conclusions: 

(1) As regards the matrix elements of the first (5X5) block, i.e., those among the 
functions centred on the first pyrrole where the density matrix of the kernel is 
also localized, one can observe that the very small differences between exact and 
approximate values are due to the fact that the kernel orbitals are respectively 
those of the dimer - Table 1 - and those of the pyrrole - Table 2. Since the 
largest error is of the order of  0.0007 a.u. one can conclude that the core and tr 
orbitals of the pyrrole are quite transferable if a proper localization process is 
used. This means also that the mixing effects due to the strong orthogonality 
relation between group functions of two separate pyrroles are negligible. 

(2) As for the other matrix elements, we observe that the largest errors affect the 
(5, 7) and (5, 10) terms, i.e. those between the 2p on C5 and the 2p on each of 
the two atoms closest to C5 where no functions have been centred for describing 
the kernel of the exchange operator. These errors, however, are of a few 
millihartrees and can be further reduced by properly enlarging the basis set used 
for the kernel expansion. 

In order to make a comparison of our results with those obtained using the 
well known X, representation of the exchange operator [11, 12] we have reported 
in Table 3 a matrix, representative of the same exchange operator as in Tables 
1 and 2, but with a kernel approximated as follows: 

k(f, f ') = fi(f - f')ctQ 1/3(f). (13) 

The value of the constant ct has been obtained by minimizing the mean square 
deviation among exact and approximate matrix elements. The results of Table 3 
show that the X~ representation provides less accurate values than our method, 
in particular for the elements between functions centred on the second pyrrole. 
These elements in fact differ from the exact ones by one or two orders of 
magnitude. 

Table 3. X~ approximation of the exchange operator: the matrix elements are calculated among ten 2p 
functions on the two pyrrole rings. The functions are numbered as the positions in Fig. 1. All the elements 
are given in atomic units 

1 2 3 4 5 6 7 8 9 10 

1 0.1868 
2 0 .0303  0.1563 
3 0 .0048  0 .0344  0.1585 
4 0 .0048  0 .0058  0 .0317  0.1581 
5 0 .0293  0 .0058  0 .0058  0.0331 
6 0 .0016  0 .0002  0 .0002  0.0017 
7 0. 0. 0. 0.0002 
8 0. 0. 0. 0. 
9 0. 0. 0. 0. 

10 0.0003 0. 0. 0.0001 

0.1333 
0.0109 0.0305 
0.0006 0 .0067  0.0310 
0.0001 0 .0015  0 .0058  0.0209 
0.0001 0 .0015  0 .0011 0.0055 
0.0007 0 .0076  0 .0013  0.0013 

0.0208 
0.0062 0.0294 
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Table 4. Largest absolute errors (Amax) in 
the matrix representation of the exchange 
operator with a kernel approximated via Eq. 
(2) and using different sets of N basis func- 
tions centred on one pyrrole. In the last 
column the corresponding HF energies (E~) 
for the n electrons of the dimer are reported. 
All the quantities are given in atomic units 

N A~× Emeth 

5 0.0173 - 19.9695 
15 0.0095 - 19.9653 
19 0.0094 - 19.9545 
7 0.0024 - 19.9579 

E~x = - 19.9546 

Finally, for studying the degree of  accuracy of  our results when different sets 
of  basis functions are used for representing the kernel of  the exchange operator 
via Eq. (2), we compare in Table 4 the H F  energies obtained for the n electrons 
of  the dimer when the exchange operator - relative to the core and a electrons 
of  the d i m e r -  has been assembled as previously explained and its kernel 
expanded via Eq. (2) using different basis sets. In this table we give also the 
largest absolute errors affecting the same exchange matrix as in Tables 1 and 2 
but with the kernel expanded using different basis sets. 

The results reported in the first row of  Table 4 are relative to a minimal basis 
set of  Slater functions on the first pyrrole, i.e., five 2p orbitals - one for each 
heavy a t o m -  with Slater exponents. The set used for the second row calcula- 
tions is the same as the previous one but enlarged with two expanded 2p 
functions on each heavy a tom (~c = 0.54, 0.18; aN = 0.6, 0.2). Finally the basis 
set for the third row of  Table 4 is increased with respect to the previous one by 
two 2p functions (c~ =0.54,0.18)  centred on the positions of  the hydrogens 
bonded to 6"2 and C5 in the pyrrole. 

We observe that by increasing the dimension of the basis set used for the 
representation of  the exchange kernel via Eq. (2) the errors both in the matrix 
elements and in the energy are reduced appreciably. The energy value, in 
particular, converges quickly to the exact one, as expected from the small values 
of  the absolute errors in the exchange matrix elements. 

Furthermore,  we point out that in all these calculations the largest error 
affects always the nondiagonal elements between the 2p function on C5 and that 
on C6 in the second pyrrole. A better local description of the kernel of  the 
exchange operator should, therefore, reduce appreciably these errors, a fact that 
is confirmed by the results of  the last row of  Table 4 obtained using the basis set 
previously discussed for Tables 1 and 2, that is a minimal set enlarged by two 2p 
functions on C6 and C6,. We observe that with such a small increment of  the 
number of  basis functions one gets a decisive reduction of  the largest error in the 
matrix elements and also a very good energy value. 

Therefore, we conclude that, through a judicious choice of  the type and 
localization of the basis functions, one can obtain an accurate and economic 
representation of  the exchange operators via Eq. (2) or (5) at least in those cases 
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in which their kernels are made  up by orbitals clearly localized on well-defined 
molecular  fragments.  
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